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In pursuing analogies between gravitation and electrodynamics, the question 
occurs as to the possible existence of a gravitational analog of the (hypothetical) 
magnetic monopole. This entity cannot exist in standard general relativity, but 
could in a theory which makes use of non-Riemannian geometry. A theory 
involving such "protational monopoles" is formulated here, and comments are 
made on the possible relevance of such a theory for the spectral shifts and energy 
releases in such objects as quasars. But it is also pointed out that the quantization 
of mass necessitated by protational monopoles casts doubts upon their existence. 

1. THE GRAVITATIONAL-ELECTROMAGNETIC ANALOGY 

There are a number of interesting and suggestive analogies between 
gravitation and electrodynamics and, of course, some fundamental dif- 
ferences. Here I wish to consider one possible correspondence between these 
two classes of phenomena, the possible existence of a gravitational analog of 
the magnetic monopole. 

It is well known that the mathematical formulation of the Newtonian 
theory of gravitation is very similar to that for electrostatics. The former 
theory can be summarized in the following set of equations: 

mi~=mgG, v - G =  -41rkp, v •  (1) 

The first equation of this set is that for the motion of a test particle with 
inertial mass mj and passive gravitational m a s s  mg in a gravitational field G. 
The other equations, in which k is the Newtonian gravitational constant and 
to the mass density, allow G to be calculated if sources and boundary 
conditions are given. The equations of electrostatics are obtained by chang- 
ing m s to q, the charge of the test particle, G to E, the electric field, and k to 
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a value depending on the system of electromagnetic units to be used. The 
actual correspondence between the two theories is, however, not quite as 
straightforward as such simple replacements might indicate. First, mg/rn i is 
the same for all bodies (equivalence principle), while q / m i  is not. Secondly, 
only one sign of mass has been found in nature, while a body may have 
positive, negative, or zero charge. Thirdly, the constant k must be negative 
in the electromagnetic case: like masses attract, but like charges repel. 

When we advance to Einstein's theory of gravitation, we find some 
other similarities between gravitation and electromagnetism. Throughout 
this section I shall assume that fields are weak, and that the speeds of test 
particles are small in comparison with that of light, which is now taken to 
be unity. In addition, it will be assumed that fields are stationary: Og~/Ot 
---0 in an appropriate reference frame, though the metric components g0i 
need not vanish. (Greek indices range from 0 through 3, and Latin from 1 
through 3.) The world line of a neutral test particle will be a geodesic of the 
curved space-time. With the stated assumptions, the geodesic equation 
yields, to first order in the speed of the particle (Weinberg 1972), 

dv~ i 0 } - 2 (  i 
art = - ( 0  0 j }  vj (2) 

The first term on the right of (2) corresponds to the Newtonian field G i. In 
addition to this "gravitational field" G we shall also define a field P via 
p k =  ekmn(onm) ' SO that (o~)= l _i ok --'~jk ~- . (We shall soon see that, in this 
situation, the Christoffel bracket of the first kind, [0j, k], is antisymmetric 
in j and k.) Equation (2) can then be written 

dr~dr = G + v X P  (3) 

The non-Newtonian force term involving the "protational" field P of 
Forward (1961; see also Penfield and Haus, 1967) corresponds to the 
Lorentz force on an electric charge in a magnetic field B. It is this v x P 
force which should produce the Lense-Thirring (1918) precession of the 
orbit of a satellite of a rotating planet. 

We now require equations which will allow us to calculate the fields G 
and P from their sources. Since the (t~av) are the Christoffel affinities, our 
previous assumptions allow us to conclude that G is a gradient (of the 
Newtonian potential plus relativistic corrections), while, with the metric 
signature - 1, + l, + l, + l, 

[0j, i] ~ �89 - goj,i) (4) 
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P will thus be a curl, and we may write 

v x G = 0 ,  v - P = 0  (5) 

These relations, which are analogous to half of Maxwell's equations, follow 
from the Riemannian relation between metric and affinity, together with 
our slow-motion, weak-field approximations. Monopole sources for the 
protational field should, however, appear in this approximation if such 
entities exist. 

The Einstein equations now give us the equations which correspond to 
the other half of the Maxwell set, 

v-G = -47rkp, v x P  = - 161rkpU (6) 

Here U is the velocity of the source material. 

2. PROTATIONAL MONOPOLES 

The possible existence of magnetic monopoles has received consider- 
able attention since the early discussion of Dirac (1931). In the electromag- 
netic analogs of (5) and (6), source terms in the first set would apparently 
produce greater symmetry between the fields E and B. The existence of 
magnetic monopoles would also complicate matters somewhat, since the 
fields could not be written in terms of potentials in the usual way. 

In view of the similarities between gravitation and electrodynamics 
which have been considered in the preceding section, it seems natural to ask 
if a gravitational analog of the hypothetical magnetic monopole might exist: 
our previous terminology suggests the name "protational monopole" for 
such an entity. 

The simplest way to introduce protational monopoles would be by 
means of equations (5) and (6), with neglect of their origin in general 
relativity. Such a phenomenological theory will be used in the last section, 
but, because of the great success and aesthetic appeal of general relativity, 
an attempt should be made to follow the route marked out by that theory. 
The existence of protational monopoles would require the introduction of 
source terms in the set (5). Since this set of equations follows, with our 
approximations, from the basic relation between metric and affinity of 
Riemannian geometry, the existence of a static protational monopole will 
require the use of non-Riemannian geometry for its description. 

A great deal of work has been done on non-Riemannian unified field 
theories during the past 65 years. I shall assume here that the equation of 
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motion of a test particle is given by the path equation 

d U ~  + F,~pU"U t~ = 0 (7) 

with the affinity given by 

= + s o /  (8) 

The choice (7) is, of course, not a unique possibility. Since an antisymmetric 
part of S~r would make no direct contribution to the path equation, we 
may assume that this tensor is symmetric in a and ft. 

If we follow the lines of our previous argument, we will now obtain an 
addition P' to the protational field as p , k =  ek,, , ,So,, , ,  together with other 
terms in the equation of motion for a test particle. Since there will be, in 
general, no requirement that P'  have a vanishing divergence, there can be 
protational monopoles. 

As a specific example, we may consider the case of Weyl's (1918) 
geometry, in which S,~ ~ is given in terms of a vector field K s by 

S , j  = g~aK ~ - g,~~ - g~0% (9) 

(This follows Eddington, 1923, with slightly clearer positioning of indices.) 
The path equation then gives the following terms in the three-acceleration in 
addition to those which one obtains in general relativity: 

a ' =  - + • ( 2 g  • (io) 

Here K is the spatial part of K ~ and g is a "vector"  made up of the metric 
components go,. The earlier approximations are still made here, but no 
assumptions have been made about the magnitude of the new vector field. 
We still have U ~ - 1. 

The first term in (10), G ' =  - g0oK, is an addition to the "gravitational" 
field, while P ' =  2g x K is the addition to the protational field. [In addition, 
we must note the final "resistive" term in equation (10).] In general, 
v .  P' * 0 and ~z x G' ~ 0, so that P' and G' are fields which may be thought 
of as arising from the protational sources associated with the field K. 

Weyl's geometry has been considered here only in order to provide a 
simple example of the type of non-Riemannian geometry in which we are 
interested. Even within the context of Weyl's theory there are other possible 
approaches--see, e.g., Maeder (1978). 

We should also note here the discussions of "gravitational dual charge" 
by, e.g., Lubkin (1977). While our "protat ional  monopole" could exist in an 
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asymptotically flat space-time, Lubkin shows that one cannot surround a 
gravitational dual charge with a two-dimensional bag which is everywhere 
spacelike. Thus these two theoretical entities are different, though sharing 
related motivations. 

3. POLE STRENGTH,  SPECTRAL SHIFTS,  AND QUASARS 

Weyl introduced the vector field K" in the above manner in an attempt 
to unify gravitational and electromagnetic interactions: K" was supposed to 
represent the electromagnetic four-vector potential. This attempt is gener- 
ally considered to have been unsuccessful, largely because of the nonintegra- 
bility of length produced by electromagnetic potentials, leading to such 
effects as changes in the characteristic frequencies radiated by atoms which 
could hardly have escaped detection. (Einstein, 1918). But it is possible that 
K" could have some quite different meaning. This vector field could be 
negligible within even our local group of galaxies, but have significant 
values in other parts of the universe. If this were the case, those regions 
would have properties quite different from our region. The dimensions and 
characteristic frequencies of atomic systems would be changed (the incre- 
ment in a magnitude L of a vector on transport through a displacement dx ~ 
being given by d L / L  = ~ d x " ) .  Thus nonnegligible values of ~ in some 
region of the universe would mean that the radiation emitted from that 
region would show systematic spectral shifts. 

In order to carry the discussion further, it is necessary to have an 
estimate of the protational pole strength associated with the new field, and 
for this purpose it will be simplest to consider a quasi-Newtonian theory of 
gravitation with protational sources. Just as for the magnetic monopole, we 
can obtain the desired relation from the requirement that the angular 
momentum associated with a protational monopole and an ordinary mass 
be properly quantized. We may consider the case in which the monopole, 
with pole strength p, is at rest, and a particle of mass m moves in its 
protational field P = -  k r / r  3. With the speed of fight restored in our 
formulas, the rate of change of orbital angular momentum L will be given 
by 

dL/dt = r • m d v / d t  = - ( k m p / c  )r • (v • r / r  3 ) = - ( k m p / c  ) d ( r / r  ) / d t  

Thus L +  k m p r / c r  is constant, k m p / c  is the magnitude of the intrinsic field 
momentum, whose minimum value will be h / 2 .  Thus we obtain 

p = h c / 2 k m  (11) 
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for the minimum value of the protational pole strength. Mass does not 
appear to be quantized in the same way that charge is, a serious difficulty 
which will be discussed in the next section. For the present, we may note 
that if we let m be the electron rest mass, the smallest rest mass which is 
known to occur in nature for a nonrelativistic particle, the corresponding 
value for the minimum protational pole strength is 3 • 1017 g, 

This is a huge mass for an elementary particle, and a relatively small 
number of such particles could produce significant gravitational effects. (Of 
course we must remember that this represents a novel type of "mass" as 
well.) Because of numerical coincidences, the mass obtained here is not far 
from that which is significant for the evaporation of black holes via the 
Hawking (1975) process. 

Significant numbers of protational monopoles in a region of space 
would be expected then to produce large spectral shifts, and also the release 
of great amounts of energy. These features remind one of some of the most 
prominent features of quasars. It is at least conceivable that some of the 
still-puzzling effects associated with such objects might be due to the 
presence of protational monopoles. 

4. PROTATIONAL M O N O P O L E S  AND QUANTIZATION 
OF MASS 

Protational monopoles are perhaps interesting theoretical entities, but 
the quantization of rest mass required by equation (11) seems to be a quite 
serious argument against their real existence. It is not impossible that rest 
mass is quantized, though the quantum would, of course, have to be much 
smaller than the electron mass used in the previous section for illustrative 
purposes. A "graininess" on the scale of, for example, the present limits on 
the photon rest mass (see, e.g., Murphy and Burman, 1978) could easily 
have escaped detection. 

On the other hand, it must be admitted that there is certainly no 
evidence for a quantization of rest mass of this sort, and such a phenom- 
enon would require major modifications in physical theories which are well 
established. If such quantization is rejected, then there appears to be no 
place for protational monopoles. 
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